Play this article
Install and load package (DataExplorer):
#install.packages("DataExplorer")
# Load library
library(DataExplorer) # load DataExplorer
library(datasets)
library(ggplot2)
Download used data LAI_factors.csv and Countries_LAI_and_LST.csv
Read in dataset
dt1<-read.csv(file.path('D:', 'R4Researchers', 'Countries_LAI_and_LST.csv'))
dt2<-read.csv(file.path('D:', 'R4Researchers', 'LAI_factors.csv'))
introduce(airquality) # to describe basic information
introduce(dt1)
plot_bar(mtcars)
plot_boxplot(iris, by = "Species", ncol = 2L)
plot_correlation(iris)
plot_histogram(iris, ncol = 2L)
plot_prcomp(na.omit(airquality), nrow = 2L, ncol = 2L) # Visualize principal component analysis
plot_qq(iris) # plot quantile-quantile for each continuous feature
plot_scatterplot(iris, by = "Species") # create scatterplot for all features
plot_str(iris) # visualize data structure
Create a report
create_report(iris)
create_report(airquality, y = "Ozone")
create_report(dt1)
plot_histogram(dt1)
create_report(dt2)
plot_histogram(dt2)
Create customized report
create_report(
data = dt2,
output_format = html_document(toc = TRUE, toc_depth = 6, theme = "flatly"),
output_file = "report_LAI_factors.html",
output_dir = getwd(),
y = "Year",
config = configure_report(
add_plot_prcomp = TRUE,
plot_qq_args = list("by" = "Year", sampled_rows = 1000L),
plot_bar_args = list("with" = "LAI_India"),
plot_correlation_args = list("cor_args" = list("use" = "pairwise.complete.obs")),
plot_boxplot_args = list("by" = "LST_India"),
global_ggtheme = quote(theme_light())
)
)
The output will be saved in the directory and opened as html file.
If you like the content, please SUBSCRIBE to my channel for the future content
To get full video tutorial and certificate, please, enroll in the course through this link: udemy.com/course/r-for-research/?referralCo..
Â